Spotlight on the Nano-Structural Features of Mn-Doped-Aurivillius Phase For Catalysis Applications An AFM-Studies

Volume 1, Issue 1, October 2016     |     PP. 50-59      |     PDF (526 K)    |     Pub. Date: November 11, 2016
DOI:    440 Downloads     7990 Views  

Author(s)

Khaled M. Elsabawy, Materials Science Unit, Chemistry Department,Faculty of Science,Tanta University- Tanta-EGYPT; Materials Science Unit ,Chemistry Department,Faculty of Science,,Taif University,Taif, Saudi Arabia.

Abstract
The aurivillius phase of optimum Mn-doped with chemical formula Bi2SrV1.9Mn0.1O9 was carefully prepared by solid state reaction technique and ceramics procedures. The analysis of X-ray confirmed the formation of single aurivillus layered perovskite structure. The sample well characterized and then forwarded to both of SEM and AFM-investigations to predict nano-structural feature and huge surface area topology which qualifies this family of aurivillus with high oxygen content ( O=9) to be active surface material in heterogeneous catalysis processes.

Keywords
Manganese; Vanadium sites; Perovskite; Ceramic; X-ray; AFM; SEM

Cite this paper
Khaled M. Elsabawy, Spotlight on the Nano-Structural Features of Mn-Doped-Aurivillius Phase For Catalysis Applications An AFM-Studies , SCIREA Journal of Materials. Volume 1, Issue 1, October 2016 | PP. 50-59.

References

[ 1 ] K.Watanabe, m.Tanaka, E.Sumitomo, K.Katori, H.Yagi and J.F.Scott. Appl. Phys. Lett., 73, P.126,(1998).
[ 2 ] J.H.Yi, P.Thomas, M.Manier, J.P.Mercurio, I.Jauberteau and R.Guinebretiere, J.Sol-Gel Sci. Technol., 13, P.885, (1998).
[ 3 ] M.Mitsuya, K.Ishikawa, N.Nukaga and H.Funakubo, Jpn. J. Appl. Phys., part2, 39, P.L620, (2000).
[ 4 ] Y.Wu and GBi2SrV2-xZrxO9.Z.Cao., J. Mater.Res. 15, P.1583, (2000).
[ 5 ] Y.Wu and G.Z.Cao., Appl. Phys. Lett., 75, P.2650, (1999).
[ 6 ] H.SGu, J.M.Xue and J.Wang, Appl. Phys. Lett.,79, P.2061, (2001).
[ 7 ] Y.Shimakawa, Y.Kubo, Y.Nakagawa, T.Kamiyama, H.Asano, F.Izumi, Appl. Phys. Lett., 74, P.1904, (1999).
[ 8 ] J.K.Lee, B.Park, K.S.Hong, J. Appl. Phys., 88, P.2825, (2000).
[ 9 ] Y.Shimakawa, Y.Kubo, Y.Nakagawa, T.Kamiyama, H.Asano, F.Izumi, Phys. Rev., B61, P.6559, (2000).
[ 10 ] I.Coondoo, A.K.Jha, S.K.Agarwal, Ceramics international, 33, P.41, (2007).
[ 11 ] R.D.Shannon, C.T.Prewitt, Acta Crystallogr., B25, P.925, (1969).
[ 12 ] H.Taguchi, A.Shimizu, M.Nagao, H.Kido, J.Ceram.Soc.Japan, 115, P.77, (2007).
[ 13 ] M.Matsuoka, Y.Matsuo, H.Sasaki, S.Hayagawa, J.Am.Ceram.Soc., P.108, (1972).
[ 14 ] H.Ueoka,Ferroelectrics, P.352, (1974).
[ 15 ] J.H.Choi, S.I.Lee, H.J.Sung, J.H.Park, S.M.Jhon, J.Colloid Interface Science, P.291, (2006).
[ 16 ] S.J.Liu, N.G.Fan, Chin.J.Chem.Phys., P.367, (2006).
[ 17 ] M.Li, M.Xu, H.Liang, X.Li, T.Xu, ActaPhys.-Chim.Sin., 24(8), P.1405, (2008).
[ 18 ] M.Ohtaki, H.Koga, T.Tokunaga, K.Eguchi, H.Arai, J.Solid State Chem., 120, P.105, (1995).
[ 19 ] B.Raveau, A.Maignan, C.Martin, M.hervieu, Mater.Res.Bull., 35, P.1579, (2001).
[ 20 ] D.Kuo, Y.Kao, Solid State Communications, 148, P.279, (2008).
[ 21 ] R.DShannon, Acta Cryst., A2, P.751, (1976).
[ 22 ] 39- N.Syam, K.B.Varma, Mater. Sci. and Eng., B90, P.246, (2002).
[ 23 ] Khaled M. Elsabawy , Morsy M. A. Sekkina, and Mohamed A. Asker, Solid State Sciences J.,12,2 (2010)pp.1094-1097 .
[ 24 ] 24-S.R.Kokare, S.A.Pawar, N.T.Padal and P.B.Joshi, Bull. Mater. Sci., 24(2), P.243, (2001).