Mechanistic consideration for the thermal degradation of polymers based on continuous flow operation

Volume 7, Issue 2, April 2022     |     PP. 17-51      |     PDF (3198 K)    |     Pub. Date: June 24, 2022
DOI: 10.54647/energy48159    102 Downloads     152347 Views  

Author(s)

Katsuhide Murata, K. Murata Research Lab, Toyohashi 441-8151, Japan

Abstract
In this study, the author investigated the validity of the radical transfer mechanism for thermal degradation of polymers based on experimental facts and macroscopic considerations. There are various insufficiencies in the radical transfer mechanism which cannot provide any mechanistic explanation, such as the existence of gas-liquid interface in the chemical reaction dominant field, the effect of pressure on the thermal degradation behavior of polymers, and the temperature drop from liquid to gas phase in the reactor.
These insufficiencies indicate that the radical transfer mechanism alone cannot explain the entire process of the thermal degradation of polymers. The generation of volatile products requires a different mechanism than the radical transfer. The author proposed a hydrogen transfer mechanism for breaking the chain-end that produces the volatile, and discussed its consistency with the observed facts.

Keywords
Thermal degradation; Polymer; Radical transfer mechanism; Hydrogen transfer mechanism; Macroscopic mechanism; Insufficiency

Cite this paper
Katsuhide Murata, Mechanistic consideration for the thermal degradation of polymers based on continuous flow operation , SCIREA Journal of Energy. Volume 7, Issue 2, April 2022 | PP. 17-51. 10.54647/energy48159

References

[ 1 ] H. Staudinger, A. Steinhofer, Annalen der Chemie, 511 (1935) 35.
[ 2 ] S. L. Madorsky, S.Straus, J. Res. Nat. Bur. Stand. 53 (1959) 361.
[ 3 ] S. L. Madorsky, Soc. Plastics Engrs. J. 17 (1961) 665.
[ 4 ] R. Simha, L. A. Wall, P. J. Blatz, J. Polym. Sci. 5 (1950) 615.
[ 5 ] R. Simha, L. A. Wall, J. Phys. Chem. 56 (1952) 707.
[ 6 ] R. Simha, L. A. Wall, P. J. Blam, J. Chem. Phys., 29 (1958) 894.
[ 7 ] L. A. Wall, S. L. Madorsky, D. W. Brown, S. Straus, R. Simha, J. Amer. Chem. Soc. 76 (1954) 3430.
[ 8 ] E. Kiran, J. K. Gillham, J. Appl. Polym. Sci. 20 (1976) 2045.
[ 9 ] M. R. Grimbley, R. S. Lehrle, Polym. Deg. Stab. 48 (1995) 441.
[ 10 ] Y. Tsuchiya, K. Sumi, J. Polym. Sci. A-1 6 (1968) 415.
[ 11 ] Y. Tsuchiya, K. Sumi, J. Polym. Sci. A-1, 7 (1969) 1599.
[ 12 ] Y. Tsuchiya, K. Sumi, J. Polym. Sci. A-1 7 (1969) 813.
[ 13 ] R. P. Lattimer, J. Anal. Appl. Pyrol. 31 (1995) 203.
[ 14 ] E. Ranzi, M. Dente, T. Faravelli, G. Bozzano, S. Fabini, R. Nava, V. Cozzani L. Tognotti, J. Anal. Appl. Pyrol. 40-41 (1997) 305–319.
[ 15 ] T. Faravelli, G. Bozzano, C. Scassa, M. Perego, S. Fabini, E. Ranzi, M. Dente, J. Anal. Appl. Pyrol. 52 (1999) 87-103.
[ 16 ] T. Faravelli, M.Pinciroli, F. Pisano, M. Dente, E. Ranzi, J. Anal., Appl. Pyrol. 60 (2001) 103-121.
[ 17 ] T. Faravelli, G. Bozzano, M. Colombo, E. Ranzi, M. Dente, J. Anal. Appl. Pyrol. 70 (2003) 761-777.
[ 18 ] A. Mrongiu, T. Faravelli, E. Ranzi, J. Anal. Appl. Pyrol. 78(2007) 343-362.
[ 19 ] C. Libanati, L. Broadbelt, C. Lamarca, M.T. Klein, S.M. Andrews, R.J. Cotter, Molecular Simulation 11(1993) 187-204.
[ 20 ] O.S. Woo, T.M. Kruse, L.J. Broadbelt, Polym. Degrad. Stab. 70(2000) 155-160.
[ 21 ] T.M. Kruse, O. S. Woo, H.-W. Wong, L.J. Broadbelt, Chem. Eng. Sci. 56(2001) 971-979.
[ 22 ] T.M. Kruse, O.S. Woo, H.-W. Wong, S.S. Khan, L.J. Broadbelt, Macromolecules 35(2002) 7830-7844.
[ 23 ] T.M. Kruse, H.-W. Wong, L.J. Broadbelt, Ind. Eng. Chem. Res. 42(2003) 2722-2735.
[ 24 ] S.E. Levine, L.J. Broadbelt, Polym. Degrad. Stab. 93(2008) 941-951.
[ 25 ] S.E. Levine, L.J. Broadbelt, Polym. Degrad. Stab. 93(2009) 810-822.
[ 26 ] S. L. Madorsky, Thermal Degradation of Organic Polymers, John Wiley & Sons, Inc., New York, 1964.
[ 27 ] O.Levenspiel, Chemical reaction Engineering, John Wiley & Sons, New York, 1962, p.356.
[ 28 ] K. Murata, Y. Hirano, Y. Sakata, Md. A. Uddin, J. Anal. Appl. Pyrol. 65 (2002) 71–90.
[ 29 ] K. Murata, K. Sato, Y. Sakata, J. Anal. Appl. Pyrol. 71 (2004) 569–589.
[ 30 ] D.A. Anderson and E.S. Freeman, J. Polym. Sci. 54 (1961) 253.
[ 31 ] R.M. Fuoss, I.O. Salyer and H.S.Wilson, J. Polym. Sci. : Part A, 2 (1964)
[ 32 ] A.B.Mathur, V. Kumar, A.K.Nagpal and G.N.Mathur, Indian J. Technology, 19 (1981) 89.
[ 33 ] H.Nishizaki, K.Yoshida and J.H.Wang, J. Appl. Polym. Sci., 25 (1980) 2869.
[ 34 ] K. Murata, T. Makino, Nippon Kagaku Kaishi (1975) 192-200.
[ 35 ] K. Murata, K. Sato, Nenryo Kyokaishi, 61 (1982) 776-784.
[ 36 ] K. Murata, Y. Hirano, Transactions of K. Murata Research Lab, 11, 2021. (https://kmurata-research-lab.jimdofree.com/contents/)
[ 37 ] M. Brebu, I. Bunia, M. Silion, Rev. Chim. (Bucharest), 64 (2013) 1197-1200.
[ 38 ] K. Murata, T. Makino, Nippon Kagaku Kaishi, (1975) 1241-1248.
[ 39 ] F.A. Lehman, G.M. Brauer, Anal. Chem. 33 (1961) 873.
[ 40 ] K. Murata, Y. Sakata, Md. A. Uddin, J. Jpn Inst. Ener. 83 (2004) 56-63.
[ 41 ] S. Straus, S.L. Madorsky, J. Res. Nat. Bur. Stand. A66 (1962) 401.
[ 42 ] S. L. Madorsky, D. McIntyre, J. H. O’Hara, S.Straus, J.Res. Nat. Bur. Stand. A66 (1962) 307.
[ 43 ] L. A. Wall, S. Straus, J. H. Flynn, D. McIntyre, R. Simha, J. Phys. Chem. 70 (1966) 53.
[ 44 ] G. C. Cameron, Macromol. Chem. 100 (1967) 255.
[ 45 ] Nippon Kagaku-kai, Kagaku Binran (Ouyouhen), Maruzen, Tokyo, 1973, p.809.
[ 46 ] H. Kambe, Koubunsi no Netsubunkai to Tainetsusei, Baihukan, Tokyo, 1974, p.227.
[ 47 ] S. L. Madorsky, J. Res. Nat. Bur. Stand. 62 (1959) 219.
[ 48 ] F. O. Rice and K. K. Rice, The Aliphatic Free Radicals, Johns Hopkins Press, Baltimore, Md., 1936.
[ 49 ] H. H. G. Jellinek, J. Polym. Sci. 4 (1949) 13.
[ 50 ] K. Murata, M. Akimoto, Nippon Kagaku Kaishi, (1979) 774-781.